• NTT Nanophotonics Center

    NTT Nanophotonics Center

    The NTT Nanophotonics Center (NPC) was established in April 2012, and is now composed of several groups involved in nanophotonics research and based in NTT’s Basic Research Laboratories and Device Integration Laboratories. Our aim is to develop a full-fledged large-scale photonic integration technology by which we will be able to densely integrate a large number of nano-scale photonic devices with various functions in a single chip. Furthermore, we are targeting a huge reduction in energy consumption for photonic information processing by taking advantage of nanophotonics technology.

    About Us

    Project Manager Dr. Masaya Notomi
    Project Manager
    Dr. Masaya Notomi

    The NTT Nanophotonics Center (NPC) was established in April 2012, and is now composed of several groups involved in nanophotonics research and based in NTT’s Basic Research Laboratories and Device Integration Laboratories. Our aim is to develop a full-fledged large-scale photonic integration technology by which we will be able to densely integrate a large number of nano-scale photonic devices with various functions in a single chip. Furthermore, we are targeting a huge reduction in energy consumption for photonic information processing by taking advantage of nanophotonics technology.

    Photonic Nano-Structure Research Group

    Theme/Field

    We are conducting a unified research of fabrication, theoretical analysis, and evaluation for photonic crystals, with aiming to overcome various limitations in the today’s photonics technologies and to realize breakthroughs in photonic information processing.

    Topics

    Group Leader Dr. Akihiko Shinya
    Group Leader
    Dr. Akihiko Shinya

    We are developing an artificial periodic structure called a photonic crystal employing the state-of-the-art semiconductor nano-fabrication technologies for silicon and other semiconductors. Recently, we have realized ultrasmall optical resonators with ultrastrong light confinement by photonic crystals. In comparison with electronics technology, photonics technology is known to be good at handling ultrafast and broadband information processing, but it has a drawback in confining signal in a small space. The optical resonator we developed can store light within a wavelength-scale space for over a nanosecond. Such a resonator enables various ways of controlling light which have been impossible by conventional methods. As a example, we have recently demonstrated generation of slowlight in which the traveling speed of light is slowed down by a factor of 50, 000 using our ultrasmall resonators. This slowlight will be applied for signal buffering or enhancement of interactions in a photonic chip. Moreover, we have succeeded in developing ultrasmall photonic bit memories with extremely small power consumption, in which we have fully exploited theoretically-expected enhancement of light-matter interaction in our ultrasmall resonators. These technologies we are developing are suited for large-scale integration in a semiconductor chip, and we are currently continuing our research towards future densely-integrated photonic processing chips.

    Members

    Dr. Eiichi Kuramochi

    Dr. Eiichi Kuramochi

    Dr. Hideaki Taniyama

    Dr. Hideaki Taniyama

    Dr. Masaaki Ono

    Dr. Masaaki Ono

    Dr. Shota Kita

    Dr. Shota Kita

    Dr. Kohei Ikeda

    Dr. Kohei Ikeda

    Dr. Taiki Yoda

    Dr. Taiki Yoda

    Topics by Group

    Publications in 2020

    1. H. Sumikura, H. Takaki, H. Maki, and M. Notomi

      Strong exciton-phonon interaction assisting simultaneous enhancement of photoluminescence and Raman scattering from suspended carbon nanotubes

      Phys. Rev. B 102 (12), 125432 (2020).

    2. N. Takemura, M. Takiguchi, and M. Notomi

      Designs toward synchronization of optical limit cycles with coupled silicon photonic crystal microcavities

      Opt. Express 28 (19) 27657-27675 (2020).

    3. T. Yoda, and M. Notomi

      Generation and Annihilation of Topologically Protected Bound States in the Continuum and Circularly Polarized States by Symmetry Breaking

      Phys. Rev. Lett. 125 (5), 053902 (2020).

    4. N. Takemura, M. Takiguchi, H. Sumikura, E. Kuramochi, A. Shinya, and M. Notomi

      Photon-correlation measurements of stochastic limit cycles emerging from high-Q nonlinear silicon photonic crystal microcavities

      Phys. Rev. A 102 (1), 011501 (2020).

    5. S. Sergent, B. Damilano, S. Vezian, S. Chenot, T. Tsuchizawa, and M. Notomi

      Lasing up to 380K in a sublimated GaN nanowire

      Appl. Phys. Lett. 116 (22)(2020).

    6. S. Sergent, M. Takiguchi, T. Tsuchizawa, H. Taniyama, and M. Notomi

      Low-Threshold Lasing up to 360 K in All-Dielectric Subwavelength-Nanowire Nanocavities

      ACS Photonics 7 (5) 1104-1110 (2020).

    7. M. Takiguchi, N. Takemura, K. Tateno, K. Nozaki, S. Sasaki, S. Sergent, E. Kuramochi, T. Wasawo, A. Yokoo, A. Shinya, and M. Notomi

      All-Optical InAsP/InP Nanowire Switches Integrated in a Si Photonic Crystal

      ACS Photonics 7 (4) 1016-1021 (2020).

    8. S. Kita, K. Nozaki, K. Takata, A. Shinya, and M. Notomi

      Ultrashort low-loss Psi gates for linear optical logic on Si photonics platform

      Commun. Phys. 3 (1), 33 (2020).

    9. H. Sumikura, K. Hirama, K. Nishiguchi, A. Shinya, and M. Notomi

      Highly nitrogen-vacancy doped diamond nanostructures fabricated by ion implantation and optimum annealing

      APL Mater. 8 (3), 031113 (2020).

    10. Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, and S. Iwamoto

      Active topological photonics

      Nanophotonics 9 (3) 547-567 (2020).

    11. M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, and M. Notomi

      Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides

      Nat. Photonics 14 (1) 37+ (2020).

    1. K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, A. Shinya, and M. Notomi

      High signal-to-noise ratio for high-impedance-loaded nano-photodetector toward attojoule optical reception

      Appl. Phys. Lett. 115 (25), 251107 (2019).

    2. S. Sergent, B. Damilano, S. Vezian, S. Chenot, M. Takiguchi, T. Tsuchizawa, H. Taniyama, and M. Notomi

      Subliming GaN into Ordered Nanowire Arrays for Ultraviolet and Visible Nanophotonics

      ACS Photonics 6 (12) 3321-3330 (2019).

    3. R. Matsuo, J. Shiomi, T. Ishihara, H. Onodera, A. Shinya, and M. Notomi

      Methods for Reducing Power and Area of BDD-Based Optical Logic Circuits

      IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E102A (12) 1751-1759 (2019).

    4. H. Sumikura, G. Q. Zhang, M. Takiguchi, N. Takemura, A. Shinya, H. Gotoh, and M. Notomi

      Mid-Infrared Lasing of Single Wurtzite InAs Nanowire

      Nano Lett. 19 (11) 8059-8065 (2019).

    5. K. Kitayama, M. Notomi, M. Naruse, K. Inoue, S. Kawakami, and A. Uchida

      Novel frontier of photonics for data processing-Photonic accelerator

      APL Phontonics 4 (9), 090901 (2019).

    6. K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, A. Shinya, E. Kuramochi, and M. Notomi

      Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions

      Nat. Photonics 13 (7) 454-459 (2019).

    7. N. Takemura, M. Takiguchi, E. Kuramochi, A. Shinya, T. Sato, K. Takeda, S. Matsuo, and M. Notomi

      Lasing thresholds and photon statistics in high-beta buried multiple quantum well photonic crystal nanocavity lasers

      Phys. Rev. A 99 (5), 053820 (2019).

    8. S. Sergent, M. Takiguchi, T. Tsuchizawa, H. Taniyama, and M. Notomi

      ZnO-Nanowire-Induced Nanocavities in Photonic Crystal Disks

      ACS Photonics 6 (5) 1132-1138 (2019).

    9. H. Taniyama, H. Sumikura, and M. Notomi

      Simulation technique of quantum optical emission process from multiple two-level atoms based on classical numerical method

      Opt. Express 27 (9) 12070-12079 (2019).

    10. H. Sumikura, T. Wang, P. N. Li, A. K. Michel, A. Hessler, L. Jung, M. Lewin, M. Wuttig, D. N. Chigrin, and T. Taubner

      Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material

      Nano Lett. 19 (4) 2549-2554 (2019).

    11. H. Shibata, T. Hiraki, T. Tsuchizawa, K. Yamada, Y. Tokura, and S. Matsuo

      A waveguide-integrated superconducting nanowire single-photon detector with a spot-size converter on a Si photonics platform

      Supercond. Sci. Technol. 32 (3), 034001 (2019).

    12. G. Q. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh

      Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature

      Sci. Adv. 5 (2), eaat8896 (2019).

    13. K. Tateno, G. Q. Zhang, S. Sasaki, M. Takiguchi, and K. Kumakura

      Wurtzite GaP nanowire grown by using tertiarybutylchloride and used to fabricate solar cell

      Jpn. J. Appl. Phys. 58 (1), 015004 (2019).

    1. H. Sumikura, E. Kuramochi, and M. Notomi

      Nonlinear optical absorption of beryllium isoelectronic centers doped in silicon waveguides

      Appl. Phys. Lett. 113 (14), 141101 (2018).

    2. E. Kuramochi, H. Duprez, J. Kim, M. Takiguchi, K. Takeda, T. Fuji, K. Nozaki, A. Shinya, H. Sumikura, H. Taniyama, S. Matsuo, and M. Notomi

      Room temperature continuous-wave nanolaser diode utilized by ultrahigh-Q few-cell photonic crystal nanocavities

      Opt. Express 26 (20) 26598-26617 (2018).

    3. K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi

      Optimization of Temperature Sensitivity Using the Optically Detected Magnetic-Resonance Spectrum of a Nitrogen-Vacancy Center Ensemble

      Phys. Rev. Appl. 10 (3), 034009 (2018).

    4. M. Takiguchi, G. Q. Zhang, S. Sasaki, K. Nozaki, E. Chen, K. Tateno, T. Tawara, A. Shinya, H. Gotoh, and M. Notomi

      Direct modulation of a single InP/InAs nanowire light-emitting diode

      Appl. Phys. Lett. 112 (25), 251106 (2018).

    5. E. Kuramochi, N. Matsuda, K. Nozaki, A. H. Park, H. Takesue, and M. Notomi

      Wideband slow short-pulse propagation in one-thousand slantingly coupled L3 photonic crystal nanocavities

      Opt. Express 26 (8) 9552-9564 (2018).

    6. K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, A. Shinya, E. Kuramochi, and M. Notomi

      Forward-biased nanophotonic detector for ultralow-energy dissipation receiver

      APL Photonics 3 (4), 046101 (2018).

    7. K. Nozaki, S. Matsuo, A. Shinya, and M. Notomi

      Amplifier-Free Bias-Free Receiver Based on Low-Capacitance Nanophotodetector

      IEEE J. Sel. Top. Quantum Electron. 24 (2), 4900111 (2018).

    1. S. Sergent, H. Taniyama, and M. Notomi

      Design of nanowire-induced nanocavities in photonic crystal disks

      Opt. Lett. 42 (24) 5121-5124 (2017).

    2. K. Nozaki, S. Matsuo, K. Takeda, T. Fujii, M. Ono, A. Shakoor, E. Kuramochi, and M. Notomi

      Sub-fF-Capacitance Photonic-Crystal Photodetector Towards fJ/bit On-Chip Receiver

      IEICE Trans. Electron. E100C (10) 750-758 (2017).

    3. K. Takata, and M. Notomi

      PT- Symmetric Coupled-Resonator Waveguide Based on Buried Heterostructure Nanocavities

      Phys. Rev. Appl. 7 (5), 054023 (2017).

    4. K. Nozaki, A. Shakoor, S. Matsuo, T. Fujii, K. Takeda, A. Shinya, E. Kuramochi, and M. Notomi

      Ultralow-energy electro-absorption modulator consisting of InGaAsP-embedded photonic-crystal waveguide

      APL Phontonics 2 (5), 056105 (2017).

    5. S. Sergent, M. Takiguchi, T. Tsuchizawa, A. Yokoo, H. Taniyama, E. Kuramochi, and M. Notomi

      Nanomanipulating and Tuning Ultraviolet ZnO-Nanowire-Induced Photonic Crystal Nanocavities

      ACS Photonics 4 (5) 1040-1047 (2017).

    6. S. Kita, K. Takata, M. Ono, K. Nozaki, E. Kuramochi, K. Takeda, and M. Notomi

      Coherent control of high efficiency metasurface beam deflectors with a back partial reflector

      APL Phontonics 2 (4), 046104 (2017).

    7. M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Q. Zhang, E. Kuramochi, A. Shinya, and M. Notomi

      Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal

      APL Phontonics 2 (4), 046106 (2017).

    8. A. Yokoo, M. Takiguchi, M. D. Birowosuto, K. Tateno, G. Q. Zhang, E. Kuramochi, A. Shinya, H. Taniyama, and M. Notomi

      Subwavelength Nanowire Lasers on a Silicon Photonic Crystal Operating at Telecom Wavelengths

      ACS Photonics 4 (2) 355-362 (2017).

    9. M. D. Birowosuto, M. Takiguchi, A. Olivier, L. Y. Tobing, E. Kuramochi, A. Yokoo, W. Hong, and M. Notomi

      Temperature-dependent spontaneous emission of PbS quantum dots inside photonic nanostructures at telecommunication wavelength

      Opt. Commun. 383 555-560 (2017).

    1. S. Sergent, M. Takiguchi, H. Taniyama, A. Shinya, E. Kuramochi and M. Notomi

      Design of nanowire-induced nanocavities in grooved 1D and 2D SiN photonic crystals for the ultra-violet and visible ranges

      Opt. Express 24 (23), 26792-26808 (2016).

    2. M. Ono, H. Taniyama, H. Xu, M. Tsunekawa, E. Kuramochi, K. Nozaki and M. Notomi

      Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide

      Optica 3 (9), 999-1005 (2016).

    3. K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, M. Ono, A. Shakoor, E. Kuramochi and M. Notomi

      Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier

      Optica 3 (5), 483-492 (2016).

    4. M. Ono, E. Kuramochi, G. Q. Zhang, H. Sumikura, Y. Harada, D. Cox and M. Notomi

      Nanowire-nanoantenna coupled system fabricated by nanomanipulation

      Opt. Express 24 (8), 8647-8659 (2016).

    5. M. Takiguchi, H. Taniyama, H. Sumikura, M. D. Birowosuto, E. Kuramochi, A. Shinya, T. Sato, K. Takeda, S. Matsuo and M. Notomi

      Systematic study of thresholdless oscillation in high-beta buried multiple-quantum-well photonic crystal nanocavity lasers

      Opt. Express 24 (4), 3441-3450 (2016).

    6. H. Sumikura, E. Kuramochi, H. Taniyama and M. Notomi

      Enhanced electron-hole droplet emission from surface-oxidized silicon photonic crystal nanocavities

      Opt. Express 24 (2), 1072-1081 (2016).

    7. E. Kuramochi

      Manipulating and trapping light with photonic crystals from fundamental studies to practical applications

      J. Mater. Chem. C 4 (47) 11032-11049 (2016).

    8. H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi

      Purcell enhancement of fast-dephasing spontaneous emission from electron-hole droplets in high-Q silicon photonic crystal nanocavities

      Phys. Rev. B 94 (19), 195314 (2016).

    9. F. Tian, H. Sumikura, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi

      Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems

      Opt. Express 24 (24) 28039-28055 (2016).

    1. E. Kuramochi, K. Nozaki, A. Shinya, H. Taniyama, K. Takeda, T. Sato, S. Matsuo and M. Notomi

      Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

      Appl. Phys. Lett. 107, 221101 (2015).

    2. K. Nozaki, A. Lacraz, A. Shinya, S. Matsuo, T. Sato, K. Takeda, E. Kuramochi and M. Notomi

      All-optical switching for 10-Gb/s packet data by using an ultralow-power optical bistability of photonic-crystal nanocavities

      Opt. Express 23, 30379-30392 (2015).

    3. T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka and S. Matsuo

      Photonic Crystal Lasers for Chip-to-Chip and On-Chip Optical Interconnects

      IEEE J. Sel. Top. Quantum Electron. 21, 4900410 (2015).

    4. K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo

      Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects

      Opt. Express 23 (2) 702-708 (2015).

    5. G. Q. Zhang, K. Tateno, M. D. Birowosuto, M. Notomi, T. Sogawa, and H. Gotoh

      Controlled 1.1-1.6 mu m luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires

      Nanotechnology 26 (11), 115704 (2015).

    1. M. D. Birowosuto, A. Yokoo, G. Q. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi and M. Notomi

      Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform

      Nat. Mater. 13 (3), 280-286 (2014).

    2. M. D. Birowosuto, G. Zhang, A. Yokoo, M. Takiguchi and M. Notomi

      Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates

      Opt. Express 22 (10), 11713-11726 (2014).

    3. A. Fushimi, H. Taniyama, E. Kuramochi, M. Notomi and T. Tanabe

      Fast calculation of the quality factor for two-dimensional photonic crystal slab nanocavities

      Opt. Express 22 (19), 23349-23359 (2014).

    4. E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama and M. Notomi

      Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor

      Opt. Lett. 39 (19), 5780-5783 (2014).

    5. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura and M. Notomi

      Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip

      Nat. Photonics 8 (6), 474-481 (2014).

    6. S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, E. Kuramochi, H. Taniyama, M. Notomi, T. Fujii, K. Hasebe and T. Kakitsuka

      Photonic crystal lasers using wavelength-scale embedded active region

      J. Phys. D-Appl. Phys. 47 (2), 023001 (2014).

    7. M. Notomi, K. Nozaki, A. Shinya, S. Matsuo and E. Kuramochi

      Toward fJ/bit optical communication in a chip

      Opt. Commun. 314, 3-17 (2014).

    8. K. Nozaki, E. Kuramochi, A. Shinya and M. Notomi

      25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities

      Opt. Express 22 (12), 14263-14274 (2014).

    9. A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi

      Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy

      Optics Express, Vol. 22, Issue 23, pp. 28623-28634 (2014).

    10. H. Sumikura, E. Kuramochi, H. Taniyama and M. Notomi

      Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity

      Sci Rep 4, 5040 (2014).

    11. A. Tanaka, Y. Kashimura, E. Kuramochi and K. Sumitomo

      Formation of a suspended lipid membrane on a microcavity covered by a thin SiO2 layer with a nanohole array

      Appl. Phys. Express 7 (1), 017001 (2014).

    12. N. Matsuda, E. Kuramochi, H. Takesue and M. Notomi

      Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays

      Opt. Lett. 39 (8), 2290-2293 (2014).

    13. H. Takesue, N. Matsuda, E. Kuramochi and M. Notomi

      Entangled photons from on-chip slow light

      Sci Rep 4, 3913 (2014).

    1. H. Kudo, Y. Ogawa, T. Kato, A. Yokoo, and T. Tanabe

      Fabrication of whispering gallery mode cavity using crystal growth

      Appl. Phys. Lett. 102 (21), 211105 (2013).

    2. S. Matsuo, T. Sato, K. Takeda, A. Shinya, M. Nozaki. K, Taniyama. H, Notomi, M. Hasebe, and T. Kakitsuka

      Ultralow Operating Energy Electrically Driven Photonic Crystal Lasers

      IEEE Select. Topics Quant. Electron. 19, 4900311 (2013).

    3. M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi

      Femtojoule/bit integrated nanophotonics based on photonic crystals

      IEICE Electron. Express 10 (12), 20132003 (2013).

    4. K. Nozaki, S. Matsuo, K. Takeda, T. Sato, E. Kuramochi, and M. Notomi

      InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure

      Opt. Express 21 (16), 19022-19028 (2013).

    5. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi

      Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystalnanocavities

      Opt. Express 21, 11877-11888 (2013). .

    6. H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi

      Cavity-enhanced Raman scattering of single-walled carbon nanotubes

      Appl. Phys. Lett. 102 (23), 231110 (2013).

    7. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo

      Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers

      Nat. Photonics 7 (7), 569-575 (2013).

    8. M. Takiguchi, H. Sumikura, MD. Birowosuto, E. Kuramochi, T. Sato, K. Takeda, S. Matsuo, and M. Notomi

      Enhanced and suppressed spontaneous emission from a buried heterostructure photonic crystal cavity

      Appl. Phys. Lett. 103 (9), 091113 (2013).

    9. N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, and M. Notomi

      Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides

      Opt. Express 21 (7), 8596-8604 (2013).

    10. H. Takesue, N. Matsuda, E. Kuramochi, WJ. Munro, and M. Notomi

      An on-chip coupled resonator optical waveguide single-photon buffer

      Nat. Commun. 4, 2725 (2013).

    1. MD. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. van Veldhoven J, R. Notzel, and M. Notomi

      Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

      Sci Rep 2, 321 (2012).

    2. MD. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi

      Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals

      J. Appl. Phys. 112 (11), 113106 (2012).

    3. S. Imagawa, K. Edagawa, and M. Notomi

      Strong light confinement in a photonic amorphous diamond structure

      Appl. Phys. Lett. 100 (15), 151103 (2012).

    4. J. Kim, A. Shinya, K. Nozaki, H. Taniyama, CH. Chen, T. Sato, S. Matsuo, and M. Notomi

      Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser

      Opt. Express 20 (11), 11643-11651 (2012).

    5. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka

      Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser

      Opt. Express 20 (4), 3773-3780 (2012).

    6. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi

      Ultralow-power all-optical RAM based on nanocavities

      Nat. Photonics 6 (4), 248-252 (2012).

    7. K. Takeda, T. Sato, T. Kakitsuka, A. Shinya, K. Nozaki, CH. Chen, H. Taniyama, M. Notomi, and S. Matsuo

      High-Temperature Operation of Photonic-Crystal Lasers for On-Chip Optical Interconnection

      IEICE Trans. Electron. E95C (7), 1244-1251 (2012).