G03-02-e.pdf
difficult. By modeling both the metalens and image reconstruction using deep learning to jointly optimize
https://www.rd.ntt/forum/2024/doc/G03-02-e.pdf
poster_en_5.pdf
Japanese) Sekitoshi Kanai Software Innovation center Email:kanai.sekitoshi(at)lab.ntt.co.jp Stable deep
https://www.rd.ntt/cs/event/openhouse/2017/exhibition/5/poster_en_5.pdf
2019_booklet_english.pdf
estimation from spatiotemporal population data~ 04 Improving the accuracy of deep learning ~Larger capacity
https://www.rd.ntt/cs/event/openhouse/2019/download/2019_booklet_english.pdf
c_20.pdf
. Harada, G. Zhang, B. Kleijn, “Edge-consensus learning: deep learning on P2P networks with nonhomogeneous
https://www.rd.ntt/cs/event/openhouse/2020/download/c_20.pdf
NTT Communication Science Laboratories Open House 2018
for language acquisition by infants. The remarkable progress of deep learning is representative of
https://www.rd.ntt/cs/event/openhouse/2018/talk/director/index_en.html
NTT コミュニケーション科学基礎研究所 オープンハウス2020
を自在に探し出して活用・操作可能にする仕組みの実現をめざします。 関連文献 O. Krishna, G. Irie, X. Wu, T. Kawanishi, K. Kashino, “Learning
https://www.rd.ntt/cs/event/openhouse/2020/exhibition19/
Learning and Intelligent Systems Research Group | NTT Communication Science Laboratories | NTT R&D Website
, "Electrocardiographic Classification using Deep Learning with Lead Switching," Proceedings of the 46th Annual
https://www.rd.ntt/e/cs/team_project/icl/ls/
メディア認識研究グループ|NTTコミュニケーション科学基礎研究所|NTT R&D Website
Kenji Iwana, and Seiichi Uchida, "Attention to warp: Deep metric learning for multivariate time series
https://www.rd.ntt/cs/team_project/media/recognition/
c_19.pdf
.ntt.co.jp [1] O. Krishna, G. Irie, X. Wu, T. Kawanishi, K. Kashino, “Learning search path for region
https://www.rd.ntt/cs/event/openhouse/2020/download/c_19.pdf
スライド 1
学習のボトルネック解消で精度を向上 Larger capacity output function for deep learning ~深層学習における、より高い表現能力を持つ出力関数~ 深層学習
https://www.rd.ntt/cs/event/openhouse/2019/download/04_a.pdf
スライド 1
on deep learning [1] K. Zmolikova, M. Delcroix, K. Kinoshita, T. Higuchi, A. Ogawa, T. Nakatani
https://www.rd.ntt/cs/event/openhouse/2018/exhibition/16/poster16.pdf
信号処理研究グループ|NTTコミュニケーション科学基礎研究所|NTT R&D Website
processing with deep-learning techniques," IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 111-124, 2019
https://www.rd.ntt/cs/team_project/media/signal/
スライド 1
efficient deep learning for mobile devices 05 深層学習をモバイル向けに小さくします ~量子化による深層学習のモデル圧縮技術~ 画像や音声などの認識に深層学習が 盛んに用い
https://www.rd.ntt/cs/event/openhouse/2018/exhibition/5/poster5.pdf
スライド 1
や医療など、機械学習技術が導き 出した予測結果に対して根拠を説明 できることが必要となる応用分野に おいても、安心してDNNが使えるよ うな未来をめざしています。 07 Interpreting deep
https://www.rd.ntt/cs/event/openhouse/2018/exhibition/7/poster7.pdf
知能創発環境研究グループ|NTTコミュニケーション科学基礎研究所|NTT R&D Website
Classification using Deep Learning with Lead Switching," Proceedings of the 46th Annual International Conference
https://www.rd.ntt/cs/team_project/icl/ls/
Behavioral technology modeling | NTT R&D Website
approaches such as machine learning, mathematical optimization, and probability theory. The NTT Human
https://www.rd.ntt/e/hil/category/behavior_modeling/
スライド 1
auditory neural mechanisms with machine learning [1] T. Koumura, H. Terashima, S. Furukawa, “Representation
https://www.rd.ntt/cs/event/openhouse/2018/exhibition/24/poster24.pdf
talk_yoshioka.pdf
Advances in deep learning and signal processing that are making speech recognition leap forward 音声認識が人間に近づ
https://www.rd.ntt/cs/event/openhouse/2016/talk/research1/talk_yoshioka.pdf
H1-H4
personal assistance with audio and visual examples Deep learning opens the way to innovative media
https://www.rd.ntt/cs/event/openhouse/2017/talk/research2/talk_kaneko.pdf
Keeping the Spatial Relationship of the Eye and Arm Constant is Important for Motor Learning. Research on Sensorimotor Control Reveals Brain Mechanisms Underlying Movement Control Interview: Naotoshi Abekawa, Distinguished Researcher|NTT R&D Website
Keeping the Spatial Relationship of the Eye and Arm Constant is Important for Motor Learning
https://www.rd.ntt/e/basic_research/0003.html